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Internal stability of isotropic nonlinear elastic materials under homogeneous deformation
is studied. Results provide new insight into various intrinsic stability measures, first pro-
posed elsewhere, for generic nonlinear elastic solids. Three intrinsic stability criteria
involving three different tangent elastic stiffness matrices are considered, corresponding
to respective increments in strain measures conjugate to thermodynamic tension, first
Piola–Kirchhoff stress, and Cauchy stress. Primary deformation paths of interest include
spherical (i.e., isotropic) deformation, uniaxial strain, and simple shear; unstable modes
are not constrained to remain along primary deformation paths. Effects of choices of sec-
ond- and third-order elastic constants on intrinsic stability are systematically studied for
physically realistic ranges of constants. For most cases investigated here, internal stability
according to strain increments conjugate to Cauchy stress is found to be the most stringent
criterion. When third-order constants vanish, internal stability under large compression
tends to decrease as Poisson’s ratio increases. When third-order constants are nonzero, a
negative (positive) pressure derivative of the shear modulus often promotes unstable
modes in compression (tension). For large shear deformation, larger magnitudes of third-
order constants tend to result in more unstable behavior, regardless of the sign of the pres-
sure derivative of the shear modulus. A compressible neo-Hookean model is generally
much more intrinsically stable than second- and third-order elastic models when Poisson’s
ratio is non-negative.

Published by Elsevier Ltd.
1. Introduction

Stability of elastic solids under finite deformation has
been the subject of numerous studies, with early work on
intrinsic stability of crystals due to Born (1940). Nonlinear
elastic anisotropic solids (e.g., single crystals) have been
analyzed in a number of works (Hill, 1975; Hill and Milstein,
1977; Milstein and Hill, 1979; Wang et al., 1993, 1995;
Morris and Krenn, 2000), as have nonlinear elastic isotropic
solids (Hill, 1957; Rivlin, 1974; Rivlin and Beatty, 2003).

Various criteria for stability of elastic solids have been
proposed in the literature, beginning with work of Born
(1940) who associated stability with a positive definite
stiffness measure and local convexity of internal energy
expressed in terms of a Lagrangian Green strain measure.
In a real physical system, the appropriate choice of stability
criterion depends on the method of static incremental load
application (e.g., dead loading in one or more directions
(Rivlin, 1974)) and any constraints associated with bound-
ary conditions, and such a criterion may not correspond to
Born’s. When considering ‘‘intrinsic’’ or ‘‘internal’’ stability
of a unit cell or unit cube of a given material, from the con-
tinuum viewpoint or using atomic theory, the proper
choice of stability measure is ambiguous when the precise
loading mechanism is left unspecified. Different choices of
conjugate stress–strain measures (i.e., different general-
ized coordinates and conjugate forces) can lead to different
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local convexity conditions and different intrinsic stability
criteria (Hill, 1975; Hill and Milstein, 1977). As stated by
Milstein and Hill (1979), consistency of classical, unique,
and environment-dependent stability criteria with intrin-
sic stability or convexity arguments such as Born’s requires
a special environment in which loads can be varied to fol-
low the material during any disturbances while fixing val-
ues of conjugate forces, which in turn are non-unique since
they depend on the choice of generalized coordinates (i.e.,
the choice of strain measure). This load environment used
to probe stability (e.g., via virtual deformations at a fixed
stress) need not correspond to the loading program used
to achieve the stressed equilibrium state from which sta-
bility is tested (Hill and Milstein, 1977; Milstein and Hill,
1979).

Intrinsic stability requirements considered in the pres-
ent work lead to restrictions on various incremental tan-
gent elastic moduli; stability measures of this sort
applied to superposed deformation variations in any direc-
tion may require that an energy function be locally convex,
or at least that a particular stiffness matrix (i.e., Hessian) be
positive definite, at the current equilibrium state. For non-
linear materials of high symmetry (e.g., isotropic solids)
under simple deformation paths, such intrinsic stability
requirements can often be stated succinctly in terms of
restrictions on a few strain-dependent elastic coefficients.
In linear elastic solids, such requirements degenerate to
the usual constitutive constraints of positive bulk and
shear moduli. As noted above and explained in Hill and
Milstein (1977) and Parry (1978), intrinsic stability mea-
sures like those considered herein do not depend on the
load environment, but do depend on the choice of conju-
gate stress–strain measures. Comparisons among intrinsic
criteria involving different Lagrangian strain measures
were derived for generic isotropic elastic solids under
positive principal stresses (Parry, 1978).

The distinction between material instability and struc-
tural instability should be noted. As defined in the present
work, material instability correlates with intrinsic instabil-
ity, and depends only on material properties and loading
protocol. Intrinsic stability criteria are local since they con-
sider only homogeneous stress/deformation states up to
the onset of instability. In nonlinear materials (e.g., nonlin-
ear elastic, elastic–plastic, or damaged solids), the onset of
material instability depends on strain, but in linear elastic
solids, material stability is independent of strain and
simply requires positive definiteness of the tensor of elas-
tic constants. In contrast, structural instability criteria are
global rather than local, depending on geometry of the
body. The stress/strain state may be inhomogeneous prior
to onset of structural instability. Structural instability may
occur even if the material is intrinsically stable, and can be
induced by loads even in linear elastic materials. A
representative example is buckling of a slender column
under compression.

Intrinsic stability properties of solids under large com-
pressive stress or pressure are of interest for applications
in ballistics, impact phenomena, and earth and planetary
sciences. Elastic instability may signal the onset of failure
or localization phenomena, e.g., slip, fracture, or phase
transformations (Hill, 1975; Wang et al., 1993; Morris
and Krenn, 2000). Hard materials of lower symmetry such
as quartz (Gregoryanz et al., 2000), silicon carbide
(Clayton, 2010), and boron carbide (Clayton, 2012) exhibit
a decrease in certain shear elastic stiffness components
with increasing pressure. At high pressures, this tendency
may lead to the onset of instability and subsequent amor-
phization (Chen et al., 2003), which in the case of ceramic
materials hinders performance in ballistic applications. In
contrast to these polyatomic ceramic materials, most
elemental engineering materials demonstrate increasing
shear moduli with increasing pressure (Guinan and
Steinberg, 1974), which would tend to enhance rather than
diminish internal stability at large compressions.

Nonlinear elastic models of anisotropic single crystals
(Wallace, 1972; Teodosiu, 1982; Clayton, 2011) typically
assume a strain energy function written as a Taylor poly-
nomial in Green (Lagrangian) elastic strain
E ¼ 1

2 ðF
TF � 1Þ, with F the deformation gradient. Such a

model, when terms of up to third order are maintained
(i.e., second- and third-order elastic constants) provides
reasonably accurate descriptions of stresses and wave
propagation for moderate compressions (Thurston, 1974;
Clayton, 2009); however, Eulerian strain measures may
be more accurate for extreme pressures (Weaver, 1976;
Jeanloz, 1989).

The present work focuses primarily on isotropic elastic
solids of third order. Such materials are described by two
independent second-order elastic constants and three
independent third-order elastic constants (Murnaghan,
1937; Teodosiu, 1982). Because of the limited number of
constants, systematic study of effects of choices of con-
stants on intrinsic stability for simple monotonic deforma-
tion paths is tractable, and is undertaken in this work.
Third-order constants are related explicitly to pressure
derivatives of bulk and shear moduli in the reference state
(Thurston et al., 1966; Guinan and Steinberg, 1974;
Teodosiu, 1982); experimental data (Guinan and Steinberg,
1974; Steinberg, 1982) thus provide realistic bounds on
combinations of third-order constants. Choices of third-or-
der constants yielding a decreasing shear stiffness with
increasing compression provide insight into behavior of
aforementioned ceramic materials demonstrating shear
instabilities at high pressure (Gregoryanz et al., 2000; Chen
et al., 2003). It is noted that single crystals of such materi-
als are highly anisotropic (e.g., trigonal symmetry: six sec-
ond-order and fourteen third-order elastic constants) and
systematic study of effects of varying all elastic constants
individually on stability is intractable. For comparison,
intrinsic stability of a class of compressible neo-Hookean
solids (Simo and Pister, 1984), which demonstrate a
strongly increasing bulk modulus with pressure, is also
considered.

This paper is organized as follows. Requisite quantities
associated with internal stability are derived in Section 2.
Intrinsic stability of third-order elastic solids in terms of
three different criteria from the literature (Born, 1940; Hill,
1975; Wang et al., 1993) is analyzed in Section 3. For each
criterion, minimum eigenvalues of a particular tangent
stiffness matrix are examined for different choices of sec-
ond- and/or third-order elastic constants for an element
of material undergoing spherical deformation, uniaxial
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strain, and simple shear. Implicitly assumed in this analy-
sis are availability of so-called ‘‘passive’’ loading environ-
ments (Hill and Milstein, 1977; Milstein and Hill, 1979)
that make possible application of any of the three criteria
mentioned already, permitting unstable modes in any
strain direction that may or may not be coaxial with the
imposed primary deformation path up to the checkpoint
for instability. Complementary analysis of such internal
stability of neo-Hookean solids is also undertaken.
Although some general constraints have been derived else-
where for cubic crystals under pressure (Wang et al., 1993)
and neo-Hookean solids under dead loading (Rivlin, 1974;
Rivlin and Beatty, 2003), effects of ranges of elastic con-
stants on all of the considered intrinsic stability criteria
for either of these two kinds of material models have not,
to the authors’ knowledge, been reported elsewhere.

Notational conventions of continuum mechanics are
used. Vectors and higher-order tensors are written in bold
italics, scalars and scalar components in italics. Stiffness
tensors and matrices are written in serif fonts (e.g., A;B,
etc.) All are referred to a fixed Cartesian frame, with refer-
ential components in capitals and spatial components in
lower-case. Greek indices are used for Voigt notation.
Summation applies over repeated indices.

2. Nonlinear elasticity and intrinsic stability measures

2.1. General theory

Let x and X denote spatial and reference coordinates.
The deformation gradient is the invertible two-point
tensor

F ¼ @x=@X; FiJ ¼ @xi=@XJ ; ð2:1Þ

where i; J ¼ 1;2;3. By the polar decomposition theorem,

F ¼ RU; R�1 ¼ RT; U ¼ UT; ð2:2Þ

where U is positive definite. The Jacobian determinant
giving the ratio of current to initial volume is

J ¼ detF ¼ detU > 0: ð2:3Þ

The Green (Lagrangian) strain tensor and deformation
tensor are

E ¼ 1
2
ðC � 1Þ; EIJ ¼

1
2
ðCIJ � dIJÞ; ð2:4Þ

C ¼ FTF ¼ U2; CIJ ¼ FkIFkJ ¼ UIK UJK : ð2:5Þ

Cauchy stress r ¼ rT, first Piola–Kirchhoff stress P, and
second Piola–Kirchhoff stress (i.e., thermodynamic ten-
sion) S ¼ ST are related by

r ¼ J�1PFT ¼ J�1FSFT; rij ¼ J�1PiK FjK

¼ J�1FiLSLK FjK : ð2:6Þ

Cauchy pressure is p ¼ � 1
3 rii.

For a hyperelastic material with properties independent
of X, strain energy per unit reference volume W is of the
general form

W ¼W½CðFÞ� ¼W½EðFÞ� ¼WðFÞ: ð2:7Þ
Stresses are

P ¼ @W
@F
¼ 2F

@W
@C
¼ F

@W
@E
¼ FS: ð2:8Þ

Second-order tangent elastic moduli are

AðFÞ ¼ @P
@F
¼ @2W
@F@F

; CðEÞ ¼ @S
@E
¼ @2W
@E@E

¼ 4
@2W
@C@C

: ð2:9Þ

These are related by Simo and Pister (1984) and Clayton
(2011) as

AiJkL ¼ FiIFkKCIJKL þ SJLdik ð2:10Þ

and possess the symmetry properties

AiJkL ¼ AkLiJ; CIJKL ¼ CKLIJ ¼ CJIKL ¼ CIJLK : ð2:11Þ

Three intrinsic or internal stability criteria, all fre-
quently encountered in various solid mechanics, physics,
or materials science literature, are addressed in what fol-
lows. First, consider stability with respect to allowable
variations, from a possibly stressed equilibrium state, in
Green strain, dE. The following internal stability criterion
(also denoting local convexity) is usually attributed to Born
(1940):

dS � dE ¼ dE � C � dE ¼ dEaCabdEb > 0; ð2:12Þ

where ½Cab� is the symmetric 6� 6 matrix corresponding to
C in Voigt notation (a; b ¼ 1;2; . . . 6). The actual net poten-
tial energy change (internal work to second order minus
virtual work at fixed S) is half the quantity on the left side
of inequality (2.12) in the context of a trapezoidal rule for
quadrature (Hill, 1975); inclusion or omission of a factor of
1
2 does not change the stability criterion. A necessary and
sufficient condition for (2.12) to hold under arbitrary non-
zero dE is

det½Cab� > 0: ð2:13Þ

At instability, ½Cab� has null or negative eigenvalue(s), with
corresponding eigenmodes dEa. When the current configu-
ration is taken as reference,

cijklðFÞ ¼ J�1FiIFjJFkK FlLCIJKL; deij ¼ F�1
Ki F�1

Lj dEKL ð2:14Þ

and since J > 0, criterion (2.12) and (2.13) is equivalent to

dEIJCIJKLdEKL ¼ Jdeijcijkldekl > 0() det½cab� > 0: ð2:15Þ

Nonzero eigenvalues of c and C may be different, but the
critical deformation F� at which either first exhibits a zero
eigenvalue is the same. Criteria (2.12) and (2.15) are equiv-
alent to Eqs. (4.1)–(4.3) of Hill (1975). Although early cal-
culations (Born, 1940; Misra, 1940) focused on
unstressed lattices, this criteria has often been posited for
stressed materials.

A second internal stability criterion can be expressed as
the inequality (Hill, 1957, 1975)

dP � dF ¼ dF � A � dF > 0; ð2:16Þ

where dF is an admissible variation in deformation gradi-
ent. Criterion (2.16) is equivalent to Eq. 4.20 of Hill
(1975) applied in the context of dead loading. For cases
in which variations are restricted to strain only,
dF ! dU ¼ ðdUÞT, and (2.16) reduces to, considering all
possible strain increments,
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dU � A � dU ¼ dUaAabdUb > 0() det½Aab� > 0; ð2:17Þ

where ½Aab� is the symmetric 6� 6 matrix corresponding to

AIJKL ¼
1
4
ðAiJkLdiIdkK þ AjIkLdjJdkK þ AiJlKdiIdlL þ AjIlKdjJdlLÞ:

ð2:18Þ

When the current configuration is taken as reference,

aijklðFÞ ¼ J�1FjJFlLAiJkL; deij ¼
1
2
ðF�1

Ki dFjK þ F�1
Kj dFiKÞ ð2:19Þ

and since J > 0, criterion (2.17) can also be expressed as

dUIJAIJKLdUKL ¼ Jdeijaijkldekl > 0() det½aab� > 0: ð2:20Þ

As noted in Clayton (2012), this is equivalent to the so-
called GCNþ condition, listed as constitutive inequality
(8A.21) of Wang and Truesdell (1973).

A third intrinsic stability criterion is (Wang et al., 1993;
Morris and Krenn, 2000)

dr � de ¼ de � B � de > 0; ð2:21Þ

where de is a nonzero strain increment defined by

de ¼ F�TdE F�1; deij ¼ F�1
Ki dEKLF�1

Lj ð2:22Þ

and work conjugate to Cauchy stress since

dW ¼ S � dE ¼ P � dF ¼ Jr � de: ð2:23Þ

Incremental tangent modulus giving change in Cauchy
stress with respect to strain is (Wallace, 1972; Wang
et al., 1993; Morris and Krenn, 2000; Clayton, 2012)

Bijkl ¼ cijkl þ
1
2
ðrikdjl þ rildjk þ rjkdil þ rjldik � rijdkl � rkldijÞ:

ð2:24Þ

Tensor B in (2.24) exhibits full Voigt symmetry:

Bijkl ¼ Bklij ¼ Bjikl ¼ Bijlk: ð2:25Þ

Correspondingly, denoting ½Bab� the symmetric 6� 6 form
of B, internal stability holds with respect to Cauchy stress
if and only if

det½Bab� > 0: ð2:26Þ

Condition (2.21) is identical to Eq. (30) of Morris and Krenn
(2000), and the corresponding instability criterion is iden-
tical to Eq. (2.26) of Wang et al. (1995). Symmetrized
tangent stiffness B is identical in the current work and
these other works (Wang et al., 1993; Wang et al., 1995;
Morris and Krenn, 2000; Clayton, 2012); notation used in
Wang et al. (1993) and Wang et al. (1995) for ‘‘Lagrangian’’
strain corresponds to an increment in Lagrangian strain
measured with respect to a stressed reference state and
is identical to (2.22) of the present work, as derived explic-
itly by Wallace (1967). A criterion similar to (2.21) was
declared to be in accord with the ‘‘exact’’ condition for clas-
sical stability of hydrostatically loaded cubic crystals with
moduli dictated by pairwise atomic interactions (Milstein
and Hill, 1979).

Although the first equality in (2.21) does not strictly
apply for cases in which rotation of the material R – 1,
condition (2.26) has been interpreted (Morris and Krenn,
2000) as a necessary, but not always sufficient, intrinsic
stability criterion for arbitrary (i.e., unconstrained) load
increments. Utility of criteria incorporating variations in
rotation such as (2.16) with dF – ðdFÞT as conditions for
the onset of structural changes in materials is question-
able, since even the zero stress state is a boundary point
of the (un)stable domain when rotations arise (Hill,
1975). Noting that under rotations of the spatial frame,
de transforms objectively (similarly to the symmetric
deformation rate tensor) but dr generally does not, the
leftmost side of (2.21) is not necessarily objective with re-
spect to changes among rotating spatial frames of refer-
ence. This deficiency in the B stability criterion has
apparently not been emphasized in prior works that em-
ploy it (Wang et al., 1993; Wang et al., 1995; Morris and
Krenn, 2000), and no attempt is made to address it further
here. When dr ¼ �dp1 is a pressure increment, objectivity
of (2.21) does hold. Furthermore, term de � B � de following
the equality in (2.21), and hence criterion (2.26), is invari-
ant under change of spatial basis since B transforms like a
fourth-order tensor.

Minimum eigenvalues of symmetric 6� 6 matrix forms
of C;A, and B are labeled KC;KA, and KB. Since in the unde-
formed and stress free reference state C ¼ A ¼ B, the min-
imum eigenvalue of all of these matrices in said reference
state is denoted K0.

Considered later in Section 3 are homogeneous defor-
mations of a volume element (e.g., a unit cube) of uniform
material. Each of the C, A, and B intrinsic stability criteria is
treated as equally plausible since the particular means by
which incremental traction is applied to such a volume un-
der virtual deformations from the homogeneously de-
formed state is left unspecified. For a specific situation
involving dead loading, for which traction per unit refer-
ence area and hence P is held fixed during stretch variation
U, the A criterion (2.17) would be most appropriate. When
the loading mechanism fixes the Cauchy stress, e.g., as in
conventional hydrostatic compression or tension (Milstein
and Hill, 1979; Wang et al., 1993; Wang et al., 1995), then
B criterion (2.21) would be most appropriate, as discussed
in Milstein and Hill (1979) and Morris and Krenn (2000).
The C criterion (2.12) does not correlate readily with any
real load control mechanism (since there is no traction vec-
tor associated with S that is independent of deformation),
but is considered in this paper because of its historical sig-
nificance (Born, 1940; Misra, 1940; Hill, 1975) and wide-
spread use in physics and materials science (Gregoryanz
et al., 2000). Viewed another way, a comparison of convex-
ity criteria as generalized coordinates (i.e., strain mea-
sures) vary is analogous to a comparison of classical
elastic stability criteria as the load environment varies
(Parry, 1978).

Consideration of finite strain and correct work conju-
gate stress–strain measures is essential for meaningful
study of deformation-induced material instability. These
different measures enter the C, A, and B criteria defined
above. In contrast, in linear elasticity theory, different
stress tensors (S;P;r) and strain tensors (E;U; e) become
indistinguishable, and intrinsic stability does not depend
on strain since tangent stiffness is constant; e.g., for an iso-
tropic linear elastic solid the local stability requirement
degenerates to (3.5).
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2.2. Third-order elasticity

Strain energy density written as a Taylor series in Green
strain E is

W ¼W0 þ C0
IJEIJ þ

1
2!

C0
IJKLEIJEKL þ

1
3!

C0
IJKLMNEIJEKLEMN þ � � �

¼W0 þ @U
@EIJ

����
E¼0

EIJ þ
1
2

@2U
@EIJ@EKL

�����
E¼0

EIJEKL

þ 1
6

@3U
@EIJ@EKL@EMN

�����
E¼0

EIJEKLEMN þ � � � ð2:27Þ

Vanishing energy and stress in the undeformed reference
state leads to W0 ¼ 0 and C0

IJ ¼ 0, and henceforth restrict-
ing attention to third-order elasticity,

W ¼ 1
2

C0
IJKLEIJEKL þ

1
6

C0
IJKLMNEIJEKLEMN

¼ 1
2

C0
abEaEb þ

1
6

C0
abvEaEbEv: ð2:28Þ

Stress S and tangent modulus C are

Sa ¼ C0
abEb þ

1
2

C0
abvEbEv; Cab ¼ C0

ab þ C0
abvEv: ð2:29Þ

Second- and third-order constants in Voigt notation are C0
ab

and C0
abv. For homogeneous isotropic materials, elastic

constant tensors are of the form Teodosiu (1982)

C0
IJKL ¼ kðdIJdKLÞ þ GðdIKdJL þ dILdJKÞ; ð2:30Þ

C0
IJKLMN ¼ a½dIJdKLdMN� þ b½dIJðdKMdLN þ dKNdLMÞ

þ dKLðdIMdJN þ dINdJMÞ þ dMNðdIKdJL þ dILdJKÞ�
þ v½dIKðdJMdLN þ dJNdLMÞ þ dJLðdIMdKN þ dINdKMÞ
þ dILðdJMdKN þ dJNdKMÞ þ dJKðdIMdLN þ dINdLMÞ�:

ð2:31Þ

The theory of third-order elastic isotropic solids with five
independent elastic constants was developed by Murna-
ghan (1937). Second-order elastic constants obey the
familiar relations

k ¼ C0
12; G ¼ C0

44 ¼
1
2
ðC0

11 � C0
12Þ; K

¼ kþ 2
3

G; m ¼ k
2ðkþ GÞ ; ð2:32Þ

where G;K , and m are shear modulus, bulk modulus, and
Poisson’s ratio in the reference state. Third-order elastic
constants obey

a ¼ C0
123; b ¼ C0

144 ¼
1
2
ðC0

112 � C0
123Þ; v ¼ C0

456

¼ 1
8
ðC0

111 � 3C0
112 þ 2C0

123Þ: ð2:33Þ

Second-order compliance components M0
ab ¼ ½C

0
ab�
�1

are

M0
11 ¼

C0
11 þ C0

12

ðC0
11 � C0

12ÞðC
0
11 þ 2C0

12Þ
;

M0
12 ¼

�C0
12

ðC0
11 � C0

12ÞðC
0
11 þ 2C0

12Þ
; ð2:34Þ
it follows that M0
44 ¼ 2ðM0

11 �M0
12Þ ¼ 1=C0

44 ¼ 1=G. Deriva-
tives of second-order moduli Cab with respect to pressure
are, at the undeformed reference state (i.e., F ¼ 1) E ¼ 0),

C0ab ¼
@Cab

@p

����
F¼1

; ð2:35Þ

where in full tensor notation (Thurston et al., 1966),

C0IJKL ¼
@CIJKL

@EMN

@EMN

@SPQ

@SPQ

@p

����
F¼1
¼ �C0

IJKLMNM0
MNPP: ð2:36Þ

For third-order isotropic materials,

C011 ¼ �
1

3K
ðC0

111 þ 2C0
112Þ;

C012 ¼ �
1

3K
ð2C0

112 þ C0
123Þ; ð2:37Þ

leading to pressure derivatives of thermodynamic bulk and
shear moduli at the reference state:

K 0 ¼ � 1
9K
ðC0

111 þ 6C0
112 þ 2C0

123Þ; G0

¼ � 1
6K
ðC0

111 � C0
123Þ: ð2:38Þ

Conditions for which stiffness tensor C remains isotropic
under finite deformation have been recently discussed
(Fuller and Brannon, 2011). Full Cauchy symmetry
(Clayton, 2011) corresponds to k ¼ G and a ¼ b ¼ v.

2.3. Neo-Hookean elasticity

For a compressible neo-Hookean material, strain energy
density is

W ¼W0 þ 1
2

GðtrC � 3Þ þ f ðJÞ

¼W0 þ 1
2

GðFiIFiI � 3Þ þ f ðJÞ; ð2:39Þ

where function f accounts for compressibility. For the par-
ticular kind of neo-Hookean solid considered here, which
demonstrates vanishing stress and energy in the reference
state (Simo and Pister, 1984),

W ¼ 1
2

GðtrC � 3Þ � G ln J þ 1
2

kðln JÞ2: ð2:40Þ

Noting that @ ln J=@C ¼ 1
2 C�1, stress S and tangent modulus

C are

SIJ ¼ 2
@W
@CIJ
¼ GdIJ þ ðk ln J � GÞC�1

IJ ; ð2:41Þ

CIJKL ¼ 4
@2W

@CIJ@CKL

¼ kC�1
IJ C�1

KL þ ðG� k ln JÞðC�1
IK C�1

JL þ C�1
IL C�1

JK Þ: ð2:42Þ

In the reference state, C�1 ¼ 1; J ¼ 1, and (2.30) and (2.42)
are consistent; relations among second-order constants for
neo-Hookean elasticity obey (2.32). Considering spherical
deformation of the form CIJ ¼ J2=3dIJ such that rij ¼ �pdij,
pressure derivatives of bulk and shear moduli at the refer-
ence state are
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K 0 ¼ k
K

2þ 8
9

1
2m
� 1

� �� �
;

G0 ¼ k
K

1þ 4
3

1
2m
� 1

� �� �
: ð2:43Þ

Extension of this neo-Hookean model to elastic–plastic
materials and expressed in general curvilinear coordinates
can be found elsewhere (Clayton, 2012).
3. Intrinsic stability under particular deformation paths

Homogeneous deformations of an element of isotropic
material are considered. Minimum eigenvalue ratios
KC=K0;KA=K0, and KB=K0 are compared for fully imposed
spherical, uniaxial, and shearing paths, recalling that a zero
eigenvalue corresponds to the onset of intrinsic instability,
e.g., loss of local convexity associated with a given stiffness
tensor for the current deformed state. Eigenvalues and cor-
responding orthonormal eigenvectors (i.e., eigenmodes)
are computed numerically as the deformation is incre-
mented along each path. Eigenmodes are not restricted to
align with the primary (imposed) deformation path; when
critical modes do not, then possibility of bifurcation from
the primary path is implied.

At the conclusion of each applied increment of defor-
mation, it is assumed that a (possibly fictitious) loading
apparatus is available enabling virtual variations in strain
(dE; dU, or de) in any direction while holding the conjugate
stress measure (S; P, or r, respectively) fixed (Hill, 1975;
Hill and Milstein, 1977). Such conditions enable formal
application of the intrinsic stability criteria defined in
Section 2.1. A similar approach was taken in Clayton
(2012) in a study of internal stability of a particular
material of lower symmetry (boron carbide ceramic),
where following (Wang et al., 1995), internal stability
was referred to as ‘‘mechanical stability’’.

3.1. Imposed deformation paths

Prescribed deformation is parameterized as follows in
terms of a single scalar e, letting fe1; e2; e3g denote an
orthonormal basis. Spherical (and hence hydrostatic stress
states for isotropic materials):

F ¼ U ¼ ð1þ eÞ1=31; J ¼ 1þ e; ð3:1Þ

Uniaxial strain along e1:

F ¼ U ¼ 1þ ee1 � e1; J ¼ 1þ e; ð3:2Þ

Simple shear in the e1 � e2 plane:

F ¼ RU ¼ 1þ ee1 � e2; J ¼ 1; ð3:3Þ

½FiJ � ¼ ½RiK �½UKJ� ¼

2
ð4þe2Þ1=2

e
ð4þe2Þ1=2 0

�e
ð4þe2Þ1=2

2
ð4þe2Þ1=2 0

0 0 1

2
664

3
775

2
ð4þe2Þ1=2

e
ð4þe2Þ1=2 0

e
ð4þe2Þ1=2

2þe2

ð4þe2Þ1=2 0

0 0 1

2
664

3
775:

ð3:4Þ

Effects of various values of elastic constants on internal
stability under the above deformation paths are computed
and analyzed for respective Green elastic and compressible
neo-Hookean solids in Section 3.2 and Section 3.3.

3.2. Green elasticity

Considered first are materials for which all third-order
elastic constants vanish, i.e., St. Venant–Kirchhoff solids.
In this case, CIJKL ¼ C0

IJKL ¼ constant, and internal stability
constraints in the unstressed and undeformed reference
state are

det½Cab� > 0() K0 ¼ KC > 0() K > 0 and G > 0:

ð3:5Þ

These can also be associated with local strain energy con-
vexity at the reference state. The rightmost conditions in
(3.5) imply �1 < m < 1

2. Noting that G ¼ k 1
2m� 1
� �

, at a given
value of m, energy W, stresses, and tangent elastic coeffi-
cients are all proportional to k. Hence KA=K0 and KB=K0 de-
pend only on m and e for a particular deformation path.
Ratio KC=K0 ¼ 1 regardless of m and e and is of no interest.
Considered in Fig. 1 are results for �1 < m < 1

2. Intrinsic
instability occurs as K=K0 ! 0, i.e., as a curve intersects
the horizontal axis of each figure.

As shown in Fig. 1(a) and (b) for spherical deformation,
as m increases, stability in tension (e > 0) increases, and in
compression (e < 0) decreases. The B stability criterion of
(2.26) tends to be more stringent than the A criterion of
(2.17), i.e., a zero eigenvalue is more often attained at a
smaller magnitude of e for the former, particularly for
m P 0. As shown in Fig. 1(c) and 1(d) for uniaxial strain,
if m 6 0 then instability may occur in both tension and
compression. As shown in Fig. 1(e) and (f) for simple shear,
stability increases with increasing m, with KA=K0 and
KB=K0 remaining positive for m P 0 and e 6 0:8. The B cri-
terion provides a more stringent measure of stability than
the A criterion for shear deformation. As discussed more in
the Appendix, as the material tends towards incompress-
ibility (m! 0:5), intrinsic stability declines rapidly under
spherical or uniaxial compression.

Even though third-order constants are zero for results
shown in Fig. 1, the theory is still geometrically nonlinear
and mathematically valid at large magnitudes of finite
strain parameter e, i.e., results shown do not correspond
to classical linear elasticity theory, which does not distin-
guish among Piola–Kirchhoff and Cauchy stresses, for
example. Vanishing third-order constants corresponds to
K 0 ¼ G0 ¼ 0 in (2.38), which as will be noted later, is an
exceptional case that does not hold for most elemental
polycrystalline solids. Results in Fig. 1 are important, how-
ever, because St. Venant–Kirchhoff theory is widely used,
especially in the context of finite elastic–plastic theories
of metal plasticity (Rashid and Nemat-Nasser, 1992;
Clayton and McDowell, 2004; Clayton, 2006). Results also
provide a basis of comparison for calculations reported
next wherein stiffness C is not constant.

Considered next are cases for which one or more third-
order constants (i.e., a; b;v or C0

111;C
0
112;C

0
123) may be non-

zero. Attention is focused on ranges of values physically
realistic for polycrystalline engineering materials (e.g.,
metals, ceramics, and minerals). Ultrasonic measurements



Fig. 1. Normalized minimum eigenvalues of stiffness tensors A and B for isotropic second-order elasticity (C0
abv ¼ 0): (a) spherical compression, A (b)

spherical compression, B (c) uniaxial compression, A (d) uniaxial compression, B (e) shear, A (f) shear, B.
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and various high pressure experiments suggest that the
pressure derivative of the bulk modulus in the reference
state obeys 2 < K 0 < 7 for most such materials, with
3 < K 0 < 6 typical (Steinberg, 1982; Jeanloz, 1989). Experi-
mental data also suggest that the pressure derivative of the
thermodynamic shear modulus in the reference state
1 < G0 < 4 for pure elements ((Guinan and Steinberg,
1974), correcting for G0 differing from the definition in that
reference by G=3K þ 1). Also of high interest in the context
of instability at high pressure are polyatomic materials
with G0 < 0 such as silicon carbide (C044 � �0:2) (Clayton,
2010) and boron carbide (�5 KC044 K � 2) (Clayton,
2012). Means of constructing effective isotropic third-
order constants for polycrystals from anisotropic single
crystal constants are summarized in Mason and Maudlin
(1999) and references therein.

In this work, third-order constants probing the domain
0 6 K 0 6 10 and �10 6 G0 6 15 are considered, as listed in
Table 1. In the third-order elastic analysis, attention is
restricted to m ¼ 1

4 (i.e., k ¼ G ¼ 3
5 K), a sensible value



Table 1
Values of third-order elastic constants investigated for intrinsic stability.

Case C0
111 C0

112 C0
123 K 0 G0

1 0 P C0
111 P �90K 0 0 0 6 K 0 6 10 0 6 G0 6 15

2 0 0 P C0
112 P �15K 0 0 6 K 0 6 10 0

3 0 0 0 P C0
123 P �45K 0 6 K 0 6 10 � 15

2 6 G0 6 0
4 0 P C0

111 P �10K ¼ C0
111 ¼ C0

111 0 6 K 0 6 10 0

5 40K P C0
111 P �40K 0 ¼ � 1

2 C0
111

0 �10 6 G0 6 10

J.D. Clayton, K.M. Bliss / Mechanics of Materials 68 (2014) 104–119 111
representative of many metals, ceramics, and minerals. As
discussed by Gilman (2003), m ¼ 1

4 (i.e., C0
12 ¼ C0

44) is charac-
teristic of the alkali metals and ionic crystals such as alkali
halides that tend towards Cauchy symmetry. Covalently
bonded materials, e.g., many ceramics, tend to have m 6 1

4,
while engineering metals tend to have slightly larger m,
e.g., the mode is closer to 1

3 for face centered cubic metals.
Pure solid elements span the range 0:02 < m < 0:45
(Gilman, 2003). Some values for particular materials are
now quoted. Sodium chloride (alkali halide, rocksalt struc-
ture) and alumina (ceramic, trigonal structure) have
m � 0:24 (Clayton, 2009). Two covalently bonded materials
are silicon carbide (m � 0:16, hexagonal structure (Clayton,
2010)) and diamond (m � 0:07, cubic structure (McSkimin
et al., 1972)). Most single crystals are anisotropic; values
of m mentioned thus far correspond to isotropic polycrys-
tals. Two metals whose single crystals have low anisotropy
are tungsten (m � 0:28, body centered cubic structure
(Clayton, 2005)) and magnesium (m � 0:27, hexagonal
structure (Clayton and Knap, 2011)). Concrete, essentially
a porous mixture of minerals, has m � 0:15 (Clayton,
2008), though variations with composition are probable.
In summary, m ¼ 1

4 is deemed a reasonable compromise of
values mentioned above.

At fixed m, it can be shown that energy W, stresses, and
tangent elastic coefficients depend only on k and C0

abv=k,
and K0 depends only on k (linearly). Hence KC=K0, KA=K0,
and KB=K0 depend only on C0

abv=k and e for a particular
deformation path. For example, for Case 1 with m ¼ 1

4,

W
k
¼ 1

2k
C0

IJKL þ
1
3

C0
IJKLMNEMN

� �
EIJEKL;

1
k

C0
IJKL ¼ dIJdKL þ dIKdJL þ dILdJK ;

1
k

C0
IJKLMN ¼

1
8

C0
111

k
½dIKðdJMdLN þ dJNdLMÞ þ dJLðdIMdKN þ dINdKMÞ

þ dILðdJMdKN þ dJNdKMÞ þ dJKðdIMdLN þ dINdLMÞ�;

where 0 P C0
111=k P �150 in Table 1.

Shown in Fig. 2 are results for spherical deformation; in
this deformation program stress is hydrostatic, i.e.,
r ¼ �p1. Each subfigure shows minimum normalized
eigenvalues of C;A, and B for two different sets of third-
order elastic constants within prescribed domains for each
of Cases 1–5 listed in Table 1. Recall that K=K0 ¼ 1 at e ¼ 0
for any stiffness matrix, and that K=K0 ¼ 0 at the onset of
intrinsic instability as defined in the present work.
Noteworthy observations are as follows:
Case 1. [Fig. 2(a), K 0 > 0 and G0 > 0] The material
becomes increasingly stable (unstable) in com-
pression (tension) with increasing K 0 and G0.
The C, A, and B criteria give similar trends, with
B more stringent in compression and C more
stringent in tension.

Case 2. [Fig. 2(b), K 0 > 0 and G0 ¼ 0] The material
becomes increasingly unstable in compression
with increasing K 0. A change in critical eigen-
mode is observed in tension for K 0 ¼ 8:3, leading
to instability at eJ 0:12. The B criterion tends to
be more stringent, especially in compression.

Case 3. [Fig. 2(c), K 0 > 0 and G0 < 0] The material
becomes increasingly unstable in compression
with decreasing G0. The B criterion tends to be
more stringent, especially in compression.

Case 4. [Fig. 2(d), K 0 > 0 and G0 ¼ 0] Results are identical
to those for Case 2. This demonstrates the fact
that for spherical loading of isotropic third-
order elastic materials, internal stability
depends only on K;G;K 0, and G0, and not on all
three independent third-order elastic constants
considered individually.

Case 5. [Fig. 2(e), K 0 ¼ 0 and G0 > 0 or G0 < 0] The mate-
rial becomes increasingly stable in compression
(tension) with positive (negative) G0. The C, A,
and B criteria give similar trends, with B more
stringent in compression and C more stringent
in tension.

Results in Fig. 2 confirm a particular example of a more
general comparison theorem derived in Parry (1979) [Eq.
(36) of that reference]: for a fixed material model, convex-
ity with respect to stretch (i.e., A stability) is weaker than
convexity with respect to Green strain (i.e., C stability)
when S11 ¼ S22 ¼ S33 ¼ �J1=3p P 0.

Shown in Fig. 3 are results for uniaxial compression/
tension; in this deformation program stress usually in-
cludes significant hydrostatic and deviatoric components.
Noteworthy observations are as follows:

Case 1. [Fig. 3(a), K 0 > 0 and G0 > 0] The material
becomes more unstable in tension with increas-
ing K 0 and G0. The C, A, and B criteria give similar
results for the critical strain at instability.

Case 2. [Fig. 3(b), K 0 > 0 and G0 ¼ 0] The material
becomes increasingly unstable in compression
and tension with increasing K 0. The B criterion
tends to be more stringent, especially in
compression.



Fig. 2. Normalized minimum eigenvalues of stiffness tensors C;A, and B for isotropic third-order elasticity and spherical deformation: (a) case 1, C0
111 – 0

(b) case 2, C0
112 – 0 (c) case 3, C0

123 – 0 (d) case 4, C0
111 ¼ C0

112 ¼ C0
123 – 0 (e) case 5, C0

111 ¼ �2C0
123 – 0.
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Case 3. [Fig. 3(c), K 0 > 0 and G0 < 0] The material
becomes increasingly unstable in compression
and tension with decreasing G0. The domain of
intrinsic stability is small for G0 ¼ �6:3, i.e.
�0:03 K eK 0:05. The C, A, and B criteria give
similar results in compression.

Case 4. [Fig. 3(d), K 0 > 0 and G0 ¼ 0] Unlike what was
observed for spherical deformation, results for
uniaxial strain differ from those in Case 2.
However, like Case 2, the material becomes
increasingly unstable in compression and ten-
sion with increasing K 0.

Case 5. [Fig. 3(e), K 0 ¼ 0 and G0 > 0 or G0 < 0] The
domain of intrinsic stability shifts towards com-
pression (tension) with positive (negative) G0.
The C, A, and B criteria give similar trends, with
B more stringent in compression and C more
stringent in tension.



Fig. 3. Normalized minimum eigenvalues of stiffness tensors C;A, and B for isotropic third-order elasticity and uniaxial strain: (a) case 1, C0
111 – 0 (b) case

2, C0
112 – 0 (c) case 3, C0

123 – 0 (d) case 4, C0
111 ¼ C0

112 ¼ C0
123 – 0 (e) case 5, C0

111 ¼ �2C0
123 – 0.
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Shown in Fig. 4 are results for simple shear; in this
deformation program stress includes comparatively
large deviatoric components, though hydrostatic stress
does not generally vanish due to geometric nonlinear-
ity, i.e., Kelvin and Poynting effects (Eringen, 1962),
and may be large as a result of large strain or large
material nonlinearity. Noteworthy observations are as
follows:

Case 1. [Fig. 4(a), K 0 > 0 and G0 > 0] The material
becomes more unstable at large shear with
increasing K 0 and G0. The C, A, and B criteria give
similar results for the critical strain at
instability.

Case 2. [Fig. 4(b), K 0 > 0 and G0 ¼ 0] The material
becomes increasingly unstable in shear with
increasing K 0. The B criterion is the most
stringent.

Case 3. [Fig. 4(c), K 0 > 0 and G0 < 0] The material
becomes increasingly unstable in shear with
decreasing G0. The C, A, and B criteria give simi-
lar results, with C most stringent.



Fig. 4. Normalized minimum eigenvalues of stiffness tensors C;A, and B for isotropic third-order elasticity and shear deformation: (a) case 1, C0
111 – 0 (b)

case 2, C0
112 – 0 (c) case 3, C0

123 – 0 (d) case 4, C0
111 ¼ C0

112 ¼ C0
123 – 0 (e) case 5, C0

111 ¼ �2C0
123 – 0.
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Case 4. [Fig. 4d, K 0 > 0 and G0 ¼ 0] Unlike what was
observed for spherical deformation, results for
simple shear differ from those in Case 2. The
material becomes increasingly unstable with
increasing K 0, but very large strains (e > 0:45)
are attained prior to instability.

Case 5. [Fig. 4(e), K 0 ¼ 0 and G0 > 0 or G0 < 0] Compari-
son with Fig. 1(e) and 1(f) demonstrates that
the material becomes increasingly unstable
with increasing magnitude of G0, regardless of
sign of G0. The case with G0 < 0 has a slightly
larger critical strain (e� � 0:12) than the case with
G0 > 0 (e� � 0:11). The C, A, and B criteria give
similar predictions for the minimum eigenvalue.

By inspection, KC does not depend on rotation R enter-
ing (3.4). For results presented in this paper, it was also
found that critical strain e� at instability corresponding to
KA ¼ 0 or KB ¼ 0 did not change if stretch U was pre-
scribed rather than RU in (3.4); i.e., rigid rotation did not
affect loss of internal stability in simple shear. Specifically,
KB does not depend at all on rotation R since B is an
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objective fourth order tensor, and while KA can depend on
R, such dependence was found to be inconsequential at ap-
plied shear strains up to the onset of internal instability.

3.3. Neo-Hookean elasticity

In the reference state, CIJKL ¼ C0
IJKL and internal stability

conditions are again the familiar constraints

det½C0
ab� > 0() K0 > 0() K > 0 and G > 0: ð3:6Þ
Fig. 5. Normalized minimum eigenvalues of stiffness tensors A and B for neo-Ho
(c) uniaxial compression, A (d) uniaxial compression, B (e) shear, A (f) shear, B
The rightmost conditions in (3.6) again imply �1 < m < 1
2.

Noting that G ¼ kð 1
2m� 1Þ, at a given value of m, it follows

that strain energy W, stresses, and tangent elastic coeffi-
cients are all proportional to k. Hence KC=K0;KA=K0, and
KB=K0 depend only on m and e for a particular prescribed
deformation path. Considered in Fig. 5 are results for
�1 < m < 1

2. These results are analogous to those of Fig. 1,
but with a compressible neo-Hookean model rather than
a second-order Green elasticity model.
okean elasticity: (a) spherical compression, A (b) spherical compression, B
.
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As shown in Fig. 5(a) and (b) for spherical deformation,
as m increases, stability in tension (e > 0) decreases, and in
compression (e < 0) increases. The A and B stability criteria
of (2.17) and (2.26) yield notably different results. For non-
negative m, comparison with Fig. 1(a) and (b) shows that
the neo-Hookean material tends to be much more stable
in compression than the second-order elastic solid. As
shown in Fig. 5(c) and (d) for uniaxial strain, for
�0:25 6 m 6 0:25, the material remains intrinsically stable
over the large domain of strain studied (�0:5 6 e 6 0:5),
though the A [Fig. 5(c)] and B [Fig. 5(d)] criteria provide
different results. As shown in Fig. 5(e) and (f) for simple
shear, KA and KB remain positive for m P �0:5 and
e 6 1:0. Trends for KC are qualitatively similar to those
for KA and KB and are shown in Fig. 6 for m ¼ 1

4.

3.4. Summary and discussion of critical eigenmodes

Critical strain e� and corresponding eigenmode compo-
nents de�a at the onset of B instability (KB ¼ 0 at e�) are
listed in Table 2 for representative cases considered in
Section 3.3. Results are given for m ¼ 1

4. The B stability crite-
rion is presumably of highest interest since results in
Section 3.3 demonstrated it to be equally or more stringent
than C or A criteria for compressive and shear loading
paths, for most values of elastic constants considered.

For spherical or uniaxial loading, (+) denotes tension
with e� > 0, and (�) denotes compression with e� < 0.
Absent rows denote that a zero eigenvalue is not attained
for that case. Extra rows for a particular case denote a
duplicate null eigenvalue and its corresponding critical
eigenmode, one for each multiplicity of zero eigenvalue.
Recall that an eigenmode with de�1 ¼ de�2 ¼ de�3 – 0 and
de�4 ¼ de�5 ¼ de�6 ¼ 0 corresponds to a volumetric instability;
conversely, an eigenmode with de�1 þ de�2 þ de�3 ¼ 0 corre-
sponds to a shear instability. An intrinsic volumetric insta-
bility is associated with a degenerate incremental bulk
modulus, and in a real material might signify cavitation
(Wang et al., 1993; Wang et al., 1995) or mode I fracture.
An intrinsic shear instability is associated with a degener-
ate incremental shear modulus, and in a real material
might signify localized slip, twinning (Rosakis and Tsai,
Fig. 6. Normalized minimum eigenvalues of stiffness ten
1994), or mode II/III fracture. An eigenmode that is neither
purely volumetric nor pure shear is referred to as a mixed
instability. The following observations from Table 2
regarding internal instabilities are noteworthy:

Second-order elasticity. Instability under spherical com-
pression corresponds to five simultaneous shearing modes.
Instabilities under uniaxial compression and simple shear
are mixed.

Third-order elasticity, Case 1. Instability under spherical
extension corresponds to five simultaneous shearing
modes. Instabilities under uniaxial extension and simple
shear are mixed.

Third-order elasticity, Case 2. Instability under spherical
extension is volumetric. Instability under spherical com-
pression corresponds to five simultaneous shearing modes.
Instability under uniaxial extension is a shearing mode.
Instabilities under simple shear and uniaxial compression
are mixed.

Third-order elasticity, Case 3. Instability under spherical
extension is volumetric. Instability under spherical com-
pression corresponds to five simultaneous shearing modes.
Instability under uniaxial extension is mixed. Instability
uniaxial compression corresponds to two simultaneous
shearing modes. Instability under simple shear is mixed.

Third-order elasticity, Case 4. Instability under spherical
extension is volumetric. Instability under spherical com-
pression corresponds to five simultaneous shearing modes.
Instability under uniaxial extension, uniaxial compression,
and simple shear are mixed.

Third-order elasticity, Case 5. Instability under spherical
compression corresponds to five simultaneous shearing
modes. Instabilities under uniaxial extension, uniaxial
compression, and simple shear are mixed.

Neo-Hookean elasticity. No intrinsic instabilities are ob-
served or even approached for spherical loading
(jej 6 0:8), uniaxial loading (jej 6 0:8), or simple shear
loading (e 6 1) for m ¼ 1

4; therefore, je�j 	 0:8.
Cases 2, 3, and 4 demostrate volumetric intrinsic stabil-

ities in hydrostatic extension which are coaxial with the
prescribed primary deformation path. All other instabili-
ties occur in directions that differ from the direction of pri-
mary loading, meaning virtual strain increments are not
sors C and B for neo-Hookean elasticity with m ¼ 1
4.



Table 2
Critical e� (positive in tension or shear) and corresponding eigenmodes de�a for B instability, m ¼ 1

4.

Model (Case) K 0 G0 Loading e� de�1 de�2 de�3 de�4 de�5 de�6

Second-order 0 0 spherical (–) �0.40 0.21 �0.79 0.58 0 0 0
�0.79 0.21 0.58 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

uniaxial (–) �0.31 0.96 �0.19 �0.19 0 0 0
shear 1.2 0.27 0.68 0.047 0 0 �0.68

Third-order (1) (C0
111=k ¼ �150) 10 15 spherical (+) 0.042 0.21 �0.79 0.58 0 0 0

�0.79 0.21 0.58 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

uniaxial (+) 0.017 0.94 �0.24 �0.24 0 0 0
shear 0.034 0.33 0.32 �0.22 0 0 0.86

Third-order (2) (C0
112=k ¼ �25) 10 0 spherical (+) 0.10 0.58 0.58 0.58 0 0 0

spherical (–) �0.22 0.41 0.41 �0.82 0 0 0
0.71 �0.71 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

uniaxial (+) 0.077 0 0.71 �0.71 0 0 0
uniaxial (–) �0.067 �0.85 0.37 0.37 0 0 0
shear 0.088 �0.25 �0.28 0.46 0 0 0.80

Third-order (3) (C0
123=k ¼ �75) 10 � 15

2
spherical (+) 0.10 0.58 0.58 0.58 0 0 0

spherical (–) �0.067 �0.27 �0.53 0.80 0 0 0
�0.77 0.62 0.15 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

uniaxial (+) 0.045 �0.35 0.66 0.66 0 0 0
uniaxial (-) �0.026 0 0.71 �0.71 0 0 0

0 0 0 1 0 0
shear 0.044 0.11 0.092 �0.53 0 0 0.84

Third-order (4) (C0
111=k ¼ �50=3) 10 0 spherical (+) 0.10 0.58 0.58 0.58 0 0 0

spherical (–) �0.22 0.71 �0.71 0 0 0 0
0.41 0.41 �0.82 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

uniaxial (+) 0.094 0.50 0.61 0.61 0 0 0
uniaxial (–) �0.21 0.92 �0.28 �0.28 0 0 0
shear 0.43 0.48 0.60 0.37 0 0 �0.52

Third-order (5) (C0
111=k ¼ þ200=3) 0 �10 spherical (-) �0.054 �0.81 0.47 0.34 0 0 0

0.078 0.67 �0.74 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

uniaxial (+) 0.11 �0.053 0.71 0.71 0 0 0
uniaxial (–) �0.038 0.97 �0.18 �0.18 0 0 0
shear 0.080 0.26 0.29 0.22 0 0 �0.89

Neo-Hookean 26
15

7
5

any 	 0:8
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aligned with prescribed deformations of Section 3.1. In a
real material, a local strain perturbation due to a defect
in the material might be sufficient to trigger a localization
or failure mode in such a direction, presuming any con-
straints imposed by the environment permit such
phenomena.

Apparent trends in intrinsic stability of isotropic solids
under primary deformation paths of spherical compres-
sion, uniaxial strain compression, and simple shear have
been deduced in this work. These are perhaps the simplest
fundamental deformation-controlled loading paths, and
correlate with real experiments such as diamond anvil cell
compression, shock compression, and direct shear loading,
respectively. Other fundamental loading protocols not
studied here include uniaxial stress (Morris and Krenn,
2000) and all-around dead loading (Rivlin, 1974), which
have been analyzed elsewhere, but not for third-order
Green elastic and compressible neo-Hookean models stud-
ied in the present work. Results cannot, in general, be
immediately translated to other loading paths possible in
generic applications. As demonstrated by Parry (1980),
no universally weakest stability criterion exists. For a fixed



Table 3
Eigenvalue ratios, B stability, spherical and uniaxial compression, m P 0:4.

Spherical, e ¼ �0:05 Spherical, e ¼ �0:10 Uniaxial, e ¼ �0:05 Uniaxial, e ¼ �0:10

ðKB=K0Þm¼0:4 0.7437 0.4737 0.7084 0.4324
rB

1 �4.2079 �18.0217 �4.2040 �18.7845

rB
2 15.7529 12.1098 16.4888 12.6963

rB
3 10.3652 10.1742 10.4046 10.2124

rB
4 10.0352 10.0171 10.0389 10.0208

rB
5 10.0035 10.0017 10.0039 10.0021

rB
6 10.0004 10.0002 10.0004 10.0002

rB
7 10.0000 10.0000 10.0000 10.0000
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material, the most stringent criterion for stability depends
on the loading mode. For a fixed loading mode, the most
stringent criterion depends on material properties. Com-
parison theorems among different criteria that depend on
different Lagrangian coordinates have been derived (Parry,
1978; Parry, 1979); as noted already in the text describing
Fig. 2, one such theorem agrees with the present analysis of
C and A criteria for third-order elastic bodies under hydro-
static tension.
4. Conclusions

Intrinsic stability of several kinds of nonlinear elastic
isotropic solids has been analyzed for homogeneous defor-
mation paths, specifically spherical extension–compres-
sion, uniaxial tension–compression, and simple shear.
Loss of internal stability according to the C, A, or B criterion
corresponds to first appearance of a null eigenvalue of an
incremental stiffness matrix associated with second Pio-
la–Kirchhoff, first Piola–Kirchhoff, or Cauchy stress, respec-
tively. Effects of choices of second- and third-order elastic
constants on stability have systematically studied for sec-
ond- and third-order Green elastic solids and compressible
neo-Hookean solids. For most cases investigated here,
especially those involving compression, intrinsic stability
according to increments in Cauchy stress (i.e., B criterion)
is found to be the most stringent. When third-order con-
stants vanish (i.e., a St. Venant–Kirchhoff solid), intrinsic
stability under large compression tends to decrease as
Poisson’s ratio increases. When third-order constants are
nonzero, a negative (positive) pressure derivative of the
shear modulus often leads to unstable modes in compres-
sion (tension). When pressure derivatives of bulk and
shear moduli are equal, but particular third-order elastic
constants differ, internal stability is the same for spherical
deformation but may differ for uniaxial tension/compres-
sion. For simple shear, larger magnitudes of third-order
constants promote less stable behavior, regardless of the
sign of the pressure derivative of the shear modulus. A
compressible neo-Hookean elastic model demonstrates
greater intrinsic stability than the third-order elastic mod-
el when Poisson’s ratio is non-negative.
Appendix A. Minimum eigenvalue ratios in the limit of
incompressiblilty

As Poisson’s ratio m! 1
2, an isotropic solid approaches

incompressibility. Consider a Green elastic material of the
type described in Section 2.2, with vanishing third-order
elastic constants. At a fixed strain state, define ratios of
minimum eigenvalues as Poisson’s ratio is varied by the
series

rX
1 ¼

KXjm¼0:49

KXjm¼0:4
; rX

2 ¼
KXjm¼0:499

KXjm¼0:49
; . . . rX

k ¼
KXjm¼0:5�10�ðkþ1Þ

KXjm¼0:5�10�k
; . . .

ðA:1Þ

Here, X can refer to the minimum eigenvalue of stiffness
matrix A or B, and k is a positive integer. Calculations show
that rX

k ! 10 with increasing k for any of the deformation
paths and values of imposed strain e considered in
Section 3, and for both X ¼ A and X ¼ B. Representative
results are listed in Table 3 for spherical and uniaxial com-
pression and X ¼ B, demonstrating how rapidly intrinsic
stability is compromised in compression as the material
loses compressiblity. In other words, since rB

1 < 0, mini-
mum eigenvalues become strongly negative as k increases.
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